Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes.

نویسندگان

  • Anna L Gloyn
  • Ewan R Pearson
  • Jennifer F Antcliff
  • Peter Proks
  • G Jan Bruining
  • Annabelle S Slingerland
  • Neville Howard
  • Shubha Srinivasan
  • José M C L Silva
  • Janne Molnes
  • Emma L Edghill
  • Timothy M Frayling
  • I Karen Temple
  • Deborah Mackay
  • Julian P H Shield
  • Zdenek Sumnik
  • Adrian van Rhijn
  • Jerry K H Wales
  • Penelope Clark
  • Shaun Gorman
  • Javier Aisenberg
  • Sian Ellard
  • Pål R Njølstad
  • Frances M Ashcroft
  • Andrew T Hattersley
چکیده

BACKGROUND Patients with permanent neonatal diabetes usually present within the first three months of life and require insulin treatment. In most, the cause is unknown. Because ATP-sensitive potassium (K(ATP)) channels mediate glucose-stimulated insulin secretion from the pancreatic beta cells, we hypothesized that activating mutations in the gene encoding the Kir6.2 subunit of this channel (KCNJ11) cause neonatal diabetes. METHODS We sequenced the KCNJ11 gene in 29 patients with permanent neonatal diabetes. The insulin secretory response to intravenous glucagon, glucose, and the sulfonylurea tolbutamide was assessed in patients who had mutations in the gene. RESULTS Six novel, heterozygous missense mutations were identified in 10 of the 29 patients. In two patients the diabetes was familial, and in eight it arose from a spontaneous mutation. Their neonatal diabetes was characterized by ketoacidosis or marked hyperglycemia and was treated with insulin. Patients did not secrete insulin in response to glucose or glucagon but did secrete insulin in response to tolbutamide. Four of the patients also had severe developmental delay and muscle weakness; three of them also had epilepsy and mild dysmorphic features. When the most common mutation in Kir6.2 was coexpressed with sulfonylurea receptor 1 in Xenopus laevis oocytes, the ability of ATP to block mutant K(ATP) channels was greatly reduced. CONCLUSIONS Heterozygous activating mutations in the gene encoding Kir6.2 cause permanent neonatal diabetes and may also be associated with developmental delay, muscle weakness, and epilepsy. Identification of the genetic cause of permanent neonatal diabetes may facilitate the treatment of this disease with sulfonylureas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy.

Closure of ATP-sensitive K(+) channels (K(ATP) channels) in response to metabolically generated ATP or binding of sulfonylurea drugs stimulates insulin release from pancreatic beta-cells. Heterozygous gain-of-function mutations in the KCJN11 gene encoding the Kir6.2 subunit of this channel are found in approximately 47% of patients diagnosed with permanent diabetes at <6 months of age. There is...

متن کامل

Mechanism of action of a sulphonylurea receptor SUR1 mutation (F132L) that causes DEND syndrome.

Activating mutations in the genes encoding the ATP-sensitive potassium (K(ATP)) channel subunits Kir6.2 and SUR1 are a common cause of neonatal diabetes. Here, we analyse the molecular mechanism of action of the heterozygous mutation F132L, which lies in the first set of transmembrane helices (TMD0) of SUR1. This mutation causes severe developmental delay, epilepsy and permanent neonatal diabet...

متن کامل

A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes.

Neonatal diabetes is a genetically heterogeneous disorder with nine different genetic aetiologies reported to date. Heterozygous activating mutations in the KCNJ11 gene encoding Kir6.2, the pore-forming subunit of the ATP-sensitive potassium (K(ATP)) channel, are the most common cause of permanent neonatal diabetes. The sulphonylurea receptor (SUR) SUR1 serves as the regulatory subunit of the K...

متن کامل

Successful sulfonylurea treatment in a patient with permanent neonatal diabetes mellitus with a novel KCNJ11 mutation

Permanent neonatal diabetes mellitus refers to diabetes that occurs before the age of 6 months and persists through life. It is a rare disorder affecting one in 0.2-0.5 million live births. Mutations in the gene KCNJ11, encoding the subunit Kir6.2, and ABCC8, encoding SUR1 of the ATP-sensitive potassium (KATP) channel, are the most common causes of permanent neonatal diabetes mellitus. Sulfonyl...

متن کامل

Activating mutations in the ABCC8 gene in neonatal diabetes mellitus.

BACKGROUND The ATP-sensitive potassium (K(ATP)) channel, composed of the beta-cell proteins sulfonylurea receptor (SUR1) and inward-rectifying potassium channel subunit Kir6.2, is a key regulator of insulin release. It is inhibited by the binding of adenine nucleotides to subunit Kir6.2, which closes the channel, and activated by nucleotide binding or hydrolysis on SUR1, which opens the channel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New England journal of medicine

دوره 350 18  شماره 

صفحات  -

تاریخ انتشار 2004